

Patching Executable Code

Andy Goth

andrew.m.goth@gmail.com
http://www.facebook.com/andygoth

http://andy.junkdrome.org/

25 March 2013

mailto:andrew.m.goth@gmail.com
http://www.facebook.com/andygoth
http://andy.junkdrome.org/

Patching Executable Code

● Binary code and data can be modified by hand
– No source code required!

● Need a strong understanding of assembly language
– Learn as you go by examining objdump output

● Several powerful command line tools
– objdump: analyze executable object files

– xxd: dump and patch binary files

– gcc -S: compile test programs to assembly language

– as: convert assembly language to machine code

Demonstration

● Example will consist of mixed Ada and C code
● Takes one command line argument, 0 through 99
● Prints it sometimes, but with a twist
● Prints a counter that’s sometimes incremented
● Also included: a Makefile so you can follow along
● Will show how to make a few changes by hand

program.adb, 1/2

with Ada.Command_Line;

procedure Program is
 procedure C_Print(Arg: Integer);
 pragma Import(C, C_Print, "print");

 Arg: Integer range 0 .. 99 :=
 Integer'Value(
 Ada.Command_Line.Argument(1));

 Count: Integer := 10;

program.adb, 2/2
begin
 case Arg is
 when 1 .. 5 | 7 | 9 | 75 .. 80 =>
 C_Print(Arg);
 Count := Count + 1;
 when 8 | 10 .. 20 | 30 | 81 .. 99 =>
 C_Print(0);
 when others =>
 null;
 end case;
 C_Print(Count);
end Program;

print.c

#include <stdio.h>

void print(int arg)
{
 printf("%d\n", arg * 2);
}

Makefile
all: program program.objdump

CFLAGS := -ggdb3 -O0
ADAFLAGS := -ggdb3 -O0

program: program.ali program.o print.o
 gnatbind program.ali
 gnatlink program.ali print.o

%.o %.ali: %.adb
 $(CC) -c $(ADAFLAGS) $<

%.o: %.c
 $(CC) -c $(CFLAGS) $<

program.objdump: program
 objdump -sxS $< > $@

clean:
 $(RM) program program.ali program.o print.o program.objdump

.PHONY: all clean

Running the Program

● $./program 1
2
22

● $./program 6
20

● $./program 80
160
22

● $./program 99
0
20

First Change

● All the printed numbers are doubled
● Let’s make them not be doubled
● Need to find and remove the MUL instruction

– Could instead SHL 1 or ADD the number to itself

– Compiler versions and optimization flags cause wide
variation in the actual machine code

● Impossibly difficult to move anything around
– Will need to overwrite removed code with NOPs

program.objdump

● Made using gcc 4.4.4 on a 350MHz Pentium II
– Yes, this is what I have at home, please don’t laugh

● 29,174 lines long, so search skills are crucial
– Recommend “:sp”, “:vsp”, and “/” in Vim

● Everything about the program is in this file
– Could also have dumped the *.o files, but since

linking hasn’t happened, wouldn’t know the final
virtual memory addresses of anything

Finding the Code

● Typed “/<print>:” in Vim to find the print() function
● Argument is passed on the stack

– Found relative to %esp register

– Code saves %esp to %ebp so it can put more arguments on
the stack when it calls printf()

– Argument is copied from stack to %eax for processing

● Abuses LEA (Load Effective Address) to double number
– Compilers can get disgustingly creative, even with -O0

– Doubled number is put in %edx

Assembly Dump for print()
08049620 <print>:
void print(int arg)
{
 8049620: 55 push %ebp
 8049621: 89 e5 mov %esp,%ebp
 8049623: 83 ec 08 sub $0x8,%esp
 printf("%d\n", arg * 2);
 8049626: 8b 45 08 mov 0x8(%ebp),%eax
 8049629: 8d 14 00 lea (%eax,%eax,1),%edx
 804962c: b8 6a 70 05 08 mov $0x805706a,%eax
 8049631: 83 ec 08 sub $0x8,%esp
 8049634: 52 push %edx
 8049635: 50 push %eax
 8049636: e8 8d fc ff ff call 80492c8 <printf@plt>
 804963b: 83 c4 10 add $0x10,%esp
}
 804963e: c9 leave
 804963f: c3 ret

Simple Fix

● The goal isn’t to optimize, merely to patch
– Find “lea (%eax,%eax,1),%edx” at address 0x8049629

– Overwrite with “mov %eax,%edx”

● Assemble the new machine code
– echo "mov %eax,%edx" | as -al -o /dev/null

– 1 0000 89C2 mov %eax,%edx

● The machine code bytes are “89 c2”
● Pad with NOP to get three bytes, so append “90”

Performing the Patch

● Need to find the right file offset
– According to objdump, .text segment is at virtual memory

address 0x8049430 and file offset 0x1430

– Simple math says address 0x8049629 is at offset 0x1629

● Confirm three bytes at 0x1629 are currently “8d 14 00”
– xxd -s 0x1629 -l 3 program

● Replace these bytes with “89 c2 90”
– echo 89c290 | xxd -p -r -s 0x1629 - program

● Can rerun objdump to make sure change is as expected

Running the Program Again

● $./program 1
1
11

● $./program 6
10

● $./program 80
80
11

● $./program 99
0
10

Second Change

● Program prints “10” when run with argument “6”
● Let’s make it print “9” instead

– Design approach: decrement Count before it’s printed

● Need to find room to shoehorn in the decrement
● This case statement uses a jump table

– Find in Vim with “/<_ada_program>:”, “/jmp **”

– Not all case statements use jump tables

● Must update jump table slot 6 to point to new code

Assembly Dump for Case Statement
 case Arg is
80496c7: 8b 45 f0 mov -0x10(%ebp),%eax
80496ca: 83 f8 63 cmp $0x63,%eax
80496cd: 77 2e ja 80496fd <_ada_program+0xa1>
80496cf: 8b 04 85 80 70 05 08 mov 0x8057080(,%eax,4),%eax
80496d6: ff e0 jmp *%eax
 when 1 .. 5 | 7 | 9 | 75 .. 80 =>
 C_Print(Arg);
80496d8: 8b 45 f0 mov -0x10(%ebp),%eax
80496db: 83 ec 0c sub $0xc,%esp
80496de: 50 push %eax
80496df: e8 3c ff ff ff call 8049620 <print>
80496e4: 83 c4 10 add $0x10,%esp
 Count := Count + 1;
80496e7: 8b 45 f4 mov -0xc(%ebp),%eax
80496ea: 40 inc %eax
80496eb: 89 45 f4 mov %eax,-0xc(%ebp)
80496ee: eb 0d jmp 80496fd <_ada_program+0xa1>

Examining the Jump Table

● mov 0x8057080(,%eax,4),%eax
jmp *%eax

– The jump table is located at 0x8057080

– Each slot is four bytes long, starting with slot #0

– Interested in slot #6 at address 0x8057098

● 8057090 d8960408 d8960408 fd960408 d8960408
– Type “/8057090” in Vim to find this in program.objdump

– Jump target address is 0x80496fd (mind the endianness!)

– Will need to change the jump table to point to new code

Modifying the Count

● Look at the existing code to see how to access variables
– 8b 45 f4 mov -0xc(%ebp),%eax
40 inc %eax
89 45 f4 mov %eax,-0xc(%ebp)
eb 0d jmp 80496fd <_ada_program+0xa1>

● Code to load, increment, and store Count is 7 bytes long

– Older objdump prints 0xfffffff4 instead of -0xc
● Jump to end of case statement is 2 bytes long in this situation

– 5 bytes if jump displacement is outside range -128...127
● Always remember, jumps are relative to address of next instruction

– “eb 00” is a no op, but “eb fe” is an infinite loop (0xfe = -2)

Making Room for New Code

● Need 9 or 12 free bytes to patch in new code to decrement
Count and jump to the end of the case statement

● Older gcc generates startlingly inefficient Ada which can be
hand-optimized to make plenty of room for new code
– No such luck with gcc 4.4.4, even with -O0

● Sometimes can remove redundant error checking code
● Preferably, find and overwrite dead code or NOPs
● Not always possible to find enough room to work
● Found 14 consecutive NOPs between <_start> and

<__do_global_dtors_aux> starting at 0x8049452

Assembling the New Code, 1/2

● Put your assembly code into a file called “test.s”
– .org 0x8049452
mov -0xc(%ebp),%eax
dec %eax
mov %eax,-0xc(%ebp)
jmp 0
nop

● as -al test.s -o /dev/null

– 1 0000000 00000000 .org 0x8049452
2 8049452 8B45F4 mov -0xc(%ebp),%eax
3 8049455 48 dec %eax
4 8049456 8945F4 mov %eax,-0xc(%ebp)
5 8049459 E9FCFFFFFF jmp 0
6 804945e 90 nop

Assembling the New Code, 2/2

● Gather the instruction bytes, ignoring the dummy NOP (90)

– 8B45F4488945F4E9FCFFFFFF
● Compute the correct jump displacement

– Jump is relative to next instruction address (0x804945e)

– Want to jump to end of case statement (0x80496fd)

– Displacement is 0x29f = 0x80496fd – 0x804945e

– Rewrite as 32-bit little endian value to get 9F020000
● Replace dummy displacement of FCFFFFFF with 9F020000

– 8B45F4488945F4E99F020000

Performing the Second Patch, 1/2

● Idx Name Size VMA File off
 11 .text 0000dc0c 08049430 00001430
 13 .rodata 000018b0 08057060 0000f060

● New code belongs at 0x8049452 virtual memory
address and 0x1452 file offset
– 0x1452 = 0x8049452 – 0x8049430 + 0x1430

● Patch code using this command, all on one line:
– echo 8B45F4488945F4E99F020000 |
xxd -p -r -s 0x1452 - program

Performing the Second Patch, 2/2

● Idx Name Size VMA File off
 11 .text 0000dc0c 08049430 00001430
 13 .rodata 000018b0 08057060 0000f060

● Jump table slot #6 is at 0x8057098 virtual
memory address and 0xf098 file offset
– 0xf098 = 0x8057098 – 0x8057060 + 0xf060

● Patch table to point to new code (0x8049452):
– Swap endianness to Intel convention for 52940408
– echo 52940408 | xxd -p -r -s 0xf098 - program

Running the Program Yet Again

● $./program 1
1
11

● $./program 6
9

● $./program 80
80
11

● $./program 99
0
10

Advice

● Go slowly, and recheck your work continually
● Take copious notes

– Very easy to lose track of which address is which

– Changes will need to be put under configuration management

● Learn assembly language
● Look at the output of “gcc -S” and “objdump -S” to see how

the compiler does things
● Be lucky

– Creativity is an excellent substitute for luck

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

