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Patching Executable Code

● Binary code and data can be modified by hand
– No source code required!

● Need a strong understanding of assembly language
– Learn as you go by examining objdump output

● Several powerful command line tools
– objdump: analyze executable object files

– xxd: dump and patch binary files

– gcc -S: compile test programs to assembly language

– as: convert assembly language to machine code



  

Demonstration

● Example will consist of mixed Ada and C code
● Takes one command line argument, 0 through 99
● Prints it sometimes, but with a twist
● Prints a counter that’s sometimes incremented
● Also included: a Makefile so you can follow along
● Will show how to make a few changes by hand



  

program.adb, 1/2

with Ada.Command_Line;

procedure Program is
  procedure C_Print(Arg: Integer);
  pragma Import(C, C_Print, "print");

  Arg: Integer range 0 .. 99 :=
      Integer'Value(
      Ada.Command_Line.Argument(1));

  Count: Integer := 10;



  

program.adb, 2/2
begin
  case Arg is
    when 1 .. 5 | 7 | 9 | 75 .. 80 =>
      C_Print(Arg);
      Count := Count + 1;
    when 8 | 10 .. 20 | 30 | 81 .. 99 =>
      C_Print(0);
    when others =>
      null;
  end case;
  C_Print(Count);
end Program;



  

print.c

#include <stdio.h>

void print(int arg)
{
    printf("%d\n", arg * 2);
}



  

Makefile
all: program program.objdump

CFLAGS := -ggdb3 -O0
ADAFLAGS := -ggdb3 -O0

program: program.ali program.o print.o
        gnatbind program.ali
        gnatlink program.ali print.o

%.o %.ali: %.adb
        $(CC) -c $(ADAFLAGS) $<

%.o: %.c
        $(CC) -c $(CFLAGS) $<

program.objdump: program
        objdump -sxS $< > $@

clean:
        $(RM) program program.ali program.o print.o program.objdump

.PHONY: all clean



  

Running the Program

● $ ./program 1
2
22

● $ ./program 6
20

● $ ./program 80
160
22

● $ ./program 99
0
20



  

First Change

● All the printed numbers are doubled
● Let’s make them not be doubled
● Need to find and remove the MUL instruction

– Could instead SHL 1 or ADD the number to itself

– Compiler versions and optimization flags cause wide 
variation in the actual machine code

● Impossibly difficult to move anything around
– Will need to overwrite removed code with NOPs



  

program.objdump

● Made using gcc 4.4.4 on a 350MHz Pentium II
– Yes, this is what I have at home, please don’t laugh 

● 29,174 lines long, so search skills are crucial
– Recommend “:sp”, “:vsp”, and “/” in Vim

● Everything about the program is in this file
– Could also have dumped the *.o files, but since 

linking hasn’t happened, wouldn’t know the final 
virtual memory addresses of anything



  

Finding the Code

● Typed “/<print>:” in Vim to find the print() function
● Argument is passed on the stack

– Found relative to %esp register

– Code saves %esp to %ebp so it can put more arguments on 
the stack when it calls printf()

– Argument is copied from stack to %eax for processing

● Abuses LEA (Load Effective Address) to double number
– Compilers can get disgustingly creative, even with -O0

– Doubled number is put in %edx



  

Assembly Dump for print()
08049620 <print>:
void print(int arg)
{
 8049620: 55               push   %ebp
 8049621: 89 e5            mov    %esp,%ebp
 8049623: 83 ec 08         sub    $0x8,%esp
    printf("%d\n", arg * 2);
 8049626: 8b 45 08         mov    0x8(%ebp),%eax
 8049629: 8d 14 00         lea    (%eax,%eax,1),%edx
 804962c: b8 6a 70 05 08   mov    $0x805706a,%eax
 8049631: 83 ec 08         sub    $0x8,%esp
 8049634: 52               push   %edx
 8049635: 50               push   %eax
 8049636: e8 8d fc ff ff   call   80492c8 <printf@plt>
 804963b: 83 c4 10         add    $0x10,%esp
}
 804963e: c9               leave
 804963f: c3               ret



  

Simple Fix

● The goal isn’t to optimize, merely to patch
– Find “lea (%eax,%eax,1),%edx” at address 0x8049629

– Overwrite with “mov %eax,%edx”

● Assemble the new machine code
– echo "mov %eax,%edx" | as -al -o /dev/null

– 1 0000 89C2          mov %eax,%edx

● The machine code bytes are “89 c2”
● Pad with NOP to get three bytes, so append “90”



  

Performing the Patch

● Need to find the right file offset
– According to objdump, .text segment is at virtual memory 

address 0x8049430 and file offset 0x1430

– Simple math says address 0x8049629 is at offset 0x1629

● Confirm three bytes at 0x1629 are currently “8d 14 00”
– xxd -s 0x1629 -l 3 program

● Replace these bytes with “89 c2 90”
– echo 89c290 | xxd -p -r -s 0x1629 - program

● Can rerun objdump to make sure change is as expected



  

Running the Program Again

● $ ./program 1
1
11

● $ ./program 6
10

● $ ./program 80
80
11

● $ ./program 99
0
10



  

Second Change

● Program prints “10” when run with argument “6”
● Let’s make it print “9” instead

– Design approach: decrement Count before it’s printed

● Need to find room to shoehorn in the decrement
● This case statement uses a jump table

– Find in Vim with “/<_ada_program>:”, “/jmp *\*”

– Not all case statements use jump tables

● Must update jump table slot 6 to point to new code



  

Assembly Dump for Case Statement
  case Arg is
80496c7: 8b 45 f0               mov    -0x10(%ebp),%eax
80496ca: 83 f8 63               cmp    $0x63,%eax
80496cd: 77 2e                  ja     80496fd <_ada_program+0xa1>
80496cf: 8b 04 85 80 70 05 08   mov    0x8057080(,%eax,4),%eax
80496d6: ff e0                  jmp    *%eax
    when 1 .. 5 | 7 | 9 | 75 .. 80 =>
      C_Print(Arg);
80496d8: 8b 45 f0               mov    -0x10(%ebp),%eax
80496db: 83 ec 0c               sub    $0xc,%esp
80496de: 50                     push   %eax
80496df: e8 3c ff ff ff         call   8049620 <print>
80496e4: 83 c4 10               add    $0x10,%esp
      Count := Count + 1;
80496e7: 8b 45 f4               mov    -0xc(%ebp),%eax
80496ea: 40                     inc    %eax
80496eb: 89 45 f4               mov    %eax,-0xc(%ebp)
80496ee: eb 0d                  jmp    80496fd <_ada_program+0xa1>



  

Examining the Jump Table

● mov    0x8057080(,%eax,4),%eax
jmp    *%eax

– The jump table is located at 0x8057080

– Each slot is four bytes long, starting with slot #0

– Interested in slot #6 at address 0x8057098

●  8057090 d8960408 d8960408 fd960408 d8960408
– Type “/8057090” in Vim to find this in program.objdump

– Jump target address is 0x80496fd (mind the endianness!)

– Will need to change the jump table to point to new code



  

Modifying the Count

● Look at the existing code to see how to access variables
– 8b 45 f4   mov    -0xc(%ebp),%eax
40         inc    %eax
89 45 f4   mov    %eax,-0xc(%ebp)
eb 0d      jmp    80496fd <_ada_program+0xa1>

● Code to load, increment, and store Count is 7 bytes long

– Older objdump prints 0xfffffff4 instead of -0xc
● Jump to end of case statement is 2 bytes long in this situation

– 5 bytes if jump displacement is outside range -128...127
● Always remember, jumps are relative to address of next instruction

– “eb 00” is a no op, but “eb fe” is an infinite loop (0xfe = -2) 



  

Making Room for New Code

● Need 9 or 12 free bytes to patch in new code to decrement 
Count and jump to the end of the case statement

● Older gcc generates startlingly inefficient Ada which can be 
hand-optimized to make plenty of room for new code
– No such luck with gcc 4.4.4, even with -O0

● Sometimes can remove redundant error checking code
● Preferably, find and overwrite dead code or NOPs
● Not always possible to find enough room to work
● Found 14 consecutive NOPs between <_start> and 

<__do_global_dtors_aux> starting at 0x8049452



  

Assembling the New Code, 1/2

● Put your assembly code into a file called “test.s”
– .org   0x8049452 
mov    -0xc(%ebp),%eax
dec    %eax
mov    %eax,-0xc(%ebp)
jmp    0
nop

● as -al test.s -o /dev/null

– 1 0000000 00000000   .org 0x8049452
2 8049452 8B45F4     mov -0xc(%ebp),%eax
3 8049455 48         dec %eax
4 8049456 8945F4     mov %eax,-0xc(%ebp)
5 8049459 E9FCFFFFFF jmp 0
6 804945e 90         nop



  

Assembling the New Code, 2/2

● Gather the instruction bytes, ignoring the dummy NOP (90)

– 8B45F4488945F4E9FCFFFFFF
● Compute the correct jump displacement

– Jump is relative to next instruction address (0x804945e)

– Want to jump to end of case statement (0x80496fd)

– Displacement is 0x29f = 0x80496fd – 0x804945e

– Rewrite as 32-bit little endian value to get 9F020000
● Replace dummy displacement of FCFFFFFF with 9F020000

– 8B45F4488945F4E99F020000



  

Performing the Second Patch, 1/2

● Idx Name     Size      VMA       File off
 11 .text    0000dc0c  08049430  00001430
 13 .rodata  000018b0  08057060  0000f060

● New code belongs at 0x8049452 virtual memory 
address and 0x1452 file offset
– 0x1452 = 0x8049452 – 0x8049430 + 0x1430

● Patch code using this command, all on one line:
– echo 8B45F4488945F4E99F020000 |
xxd -p -r -s 0x1452 - program



  

Performing the Second Patch, 2/2

● Idx Name     Size      VMA       File off
 11 .text    0000dc0c  08049430  00001430
 13 .rodata  000018b0  08057060  0000f060

● Jump table slot #6 is at 0x8057098 virtual 
memory address and 0xf098 file offset
– 0xf098 = 0x8057098 – 0x8057060 + 0xf060

● Patch table to point to new code (0x8049452):
– Swap endianness to Intel convention for 52940408
– echo 52940408 | xxd -p -r -s 0xf098 - program



  

Running the Program Yet Again

● $ ./program 1
1
11

● $ ./program 6
9

● $ ./program 80
80
11

● $ ./program 99
0
10



  

Advice

● Go slowly, and recheck your work continually
● Take copious notes

– Very easy to lose track of which address is which

– Changes will need to be put under configuration management

● Learn assembly language
● Look at the output of “gcc -S” and “objdump -S” to see how 

the compiler does things
● Be lucky

– Creativity is an excellent substitute for luck
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