
The Linux Terminal System

Andy Goth

Fall 2004

1 Terminal system overview

The Linux terminal system is designed around the traditional model of a dumb
terminal connected via serial line to a mainframe running an application. The
application’s input and output are connected to a tty device node on the main-
frame, and all reads from and writes to said device node are handed by the
kernel reading data from or writing data to the serial line. At the user’s end,
the dumb terminal sends keystrokes to and displays characters received from
the mainframe, completing the loop between user and application. [SM, p166]

Few modern computer systems actually operate this way. For the common
case of Linux running on a PC, both the dumb terminal and the serial line are
emulated in software. Input data comes from the keyboard and output data goes
to the VGA. But the full generality of the traditional model has been retained
because most actual setups are adequately described as a subset thereof, and it
offers a surprising amount of flexibility.

It turns out that additional types of emulation besides the above are quite
useful. Most interesting is the pseudo-tty system in which the dumb terminal
itself is replaced with a second, master application. Communication between the
master and the slave is performed through a /dev/pty device node, which can
be configured exactly like a real /dev/tty. This is crucial for many programs,
such as xterm, GNU screen, ssh secure shell, and VPN-over-pppd.

In addition to the “official” terminal system, Linux supports several other
user interface systems: frame buffer, X11, and VNC. The frame buffer system
is implemented directly in the Linux kernel, whereas X11 and VNC are appli-
cations available on a variety of platforms. But this document only mentions
these in passing— its focus is the textual terminal system.

Furthermore, Linux supports a wide variety of methods for interfacing ap-
plications with other components of the user’s workstation, such as removable
media, speakers, joysticks, printers, etc. But these are beyond the scope of this
document.

1

2 stdin and stdout

Following the lead of the classic Unix tools (cat, grep, sed, . . .), most small
applications do not concern themselves with any details of the terminal system.
Even more advanced programs like gdb don’t need to deal with any terminal
API— simply reading from stdin and writing to stdout is sufficient.

While this may seem like an extremely limited interface, it’s all that’s needed
for simple programs and is in fact a great boon to complex applications: Com-
plex apps can be be divided into suites of single-purpose utilities chained to-
gether via sockets and anonymous pipes. Such utilities are relatively easy to
develop and debug and can more readily be used individually or in ways un-
forseen by the original developers

A comprehensive user interface can be developed using more advanced ter-
minal control techniques (or X11), and even though it may appear to the user
to be a single, large application, it is actually just another single-purpose utility
in the toolchain: Its purpose is simply to interface the user with the various
pipelines comprising the overall system [ESR, p15].

And, naturally, the components in such an architecture are interchangeable.
The most visible consequence to the user is the ability to select from a variety
of frontends.

As an example, my preferred integrated development environment really
isn’t “integrated” at all: Rather, it consists of existing development tools (cc,
gdb, lint, . . .) plus a text editor/source browser capable of calling them (cc)
or interacting with them (gdb) and providing easy access to the results.

3 Escape sequences and function keys

In addition to printing characters and spaces, basic dumb terminals supported
a handful of control characters for feeding paper and moving the print carriage.
Glass teletypes added the possibility of full-screen displays, changing already-
printed characters, and using color and other special effects. These additional
features were made accessable through use of the special “escape” character
(ESC) followed by sequences describing the function to be performed. For exam-
ple, if ⋆ represents ESC, then ⋆[2J means “clear the screen” on many terminals.

Simiarly, new keys were added to terminal keyboards, but since the character
set didn’t support them directly, they were encoded as another form of escape
sequence interpreted by the application. On my system, the “↑” key is encoded
as ⋆[A.

Naturally, terminals didn’t all agree on capabilities, escape sequences, or
function keys, causing a major headache for programmers of terminal-oriented
applications. A couple standards eventually emerged, the best known of which
being “ANSI” (ISO 6429/ECMA 48/ANSI X3.64). Most terminal emulators
nowadays provide a superset of vt100.

2

4 $TERM and termcap/terminfo

The $TERM environment variable is used to track the current terminal type. For
instance, when using the Linux console (vt100 emulation), $TERM is “linux”.
Programs such as telnet and ssh must be careful to set $TERM in the remote
environment so remote applications will know what sort of terminal control
sequences to generate to correctly interact with the user’s terminal.

Historically, terminal-oriented programs read /etc/termcap to map from
values of $TERM to lists of available terminal capabilities and their associated
escape sequences. As the number of terminal types grew, /etc/termcap became
unmanageably large and has been superseded by the terminfo database.

My system’s terminfo database has 2,344 entries spread over 42 subdirecto-
ries of /usr/share/terminfo for a total of 2,250,526 bytes of compiled data.
The equivalent /etc/termcap might be three times that in size or more. Re-
peatedly searching through such a large, unindexed file would be quite difficult
for humans and programs alike.

Terminfo provides not only an indexing mechanism (multiple files in subdi-
rectories), but it also supports both compiled and human-editable forms of the
terminal capability files, which can be converted from one form to the other
using the tic command.

But with terminfo alone, writing terminal-oriented programs is still exceed-
ingly difficult and repetitive, just as it was with termcap. For example, there’s
a good deal of complexity involved in locating the terminal capability file and
converting it into structured data, and duplicating this code in every terminal-
oriented program would be a serious waste of time, effort, and RAM.

5 ioctls and termios

Unix systems, especially Linux, arrange for as many things as possible to be
accessable through a character-based stream interface usable with read() and
write(). This unification is at the heart of Unix’s tremendously powerful sys-
tem of piping and redirection.

Unfortunately, many important operations do not map to the stream paradigm.
Unix and Linux handle this problem with what are known as ioctls. An ioctl
performs miscellaneous operations on file descriptors identifying already-opened
files, nodes, anonymous pipes, devices, sockets, and so on.

Terminals have ioctls for adjusting attributes such as flow control, data rate,
stop bits, CR/LF conversion, delays, echoing, and control character definitions.

These ioctls are clumsy and nonportable to use directly, so the termios sys-
tem was developed to provide a standard low-level terminal control interface.
All terminal settings are described in a struct termios control block, which
users and applications can query, modify, and commit via the stty program or
the tcgetattr() and tcsetattr() calls. [WRS, p344]

3

6 Canonical and non-canonical modes

The Linux terminal has two primary modes of operation: canonical and non-
canonical mode. These names are just convenient terms to cover combinations of
terminal settings, but they’re useful to talk about. Canonical and non-canonical
modes are also known as cooked and raw modes, respectively. Details about
what settings these terms refer to can be found in the stty(1) and termios(3)

man pages.
Programs that don’t do any terminal control of their own generally assume

the terminal is already in canonical mode, but as they’re not really concerned so
they could also be connected to anonymous pipes or files and will still function
correctly. In canonical mode, the terminal itself (or, in the case of Linux, the
in-kernel emulation) manages line editing, so the user can use backspace and
send entire lines rather than individual characters. I presume this was originally
a feature built into relatively advanced terminals to save bandwidth and provide
a more user-friendly interface. Now it just means that programs don’t need to
worry about handling backspaces.

Unfortunately, canonical mode’s line editing system is inadequate. It doesn’t
support nondestructive backspace, history browsing, tab completion, or many
other in-demand features. Besides, not all programs have line-oriented inter-
faces. For programs that need it, non-canonical mode gives fine-grained con-
trol over terminal parameters, most importantly the timeout and the minimum
number of characters in a completed read. In non-canonical mode, programs
are themselves responsible for line buffering and echoing. Of course, this adds
complexity, but the GNU readline library provides a handy wrapper, making it
easy to write powerful line-based user interfaces.

7 curses, ncurses, and S-Lang

The curses library eliminates a great deal of the complexity inherent in dealing
with widely-varying terminal types and capability sets. It internally handles
the termcap database and the $TERM variable. It makes ioctls and termios calls
to set canonical and non-canonical modes. It decodes function key sequences.
And it provides a handy standardized function call interface to programmers.
Curses makes full-screen programming easy, at least relatively so.

Ncurses is “new curses”. It adds support for terminfo plus utilities for man-
aging the database. It also supports advanced features like terminal resizing
and probably a great deal else. Internally it attempts to calculate the optimal
series of escape sequences to get the terminal to update as quickly as possible.

S-Lang’s C library provides terminal interface functions that serve as an al-
ternative to curses and ncurses that some programmers find more attractive.
Originally, Linux’s dosemu program used ncurses but at some point switched
to S-Lang, resulting in simplification of the display code and enhanced perfor-
mance.

4

8 Modern terminal emulators

Genuine terminals are less popular these days due to the availability of cheap
computers, which either can serve as thin clients or can run both the applications
and the user interface. So terminal emulator programs are used to provide
compatibility with the existing terminal interface.

9 Linux vt100 emulation

Linux emulates a superset of vt100. It provides extra sequences for things like
changing the screen palette. It also has extra ioctls for changing the font and
other miscellaneous settings.

10 GNU Screen

GNU Screen emulates a superset of vt100. It provides terminal multiplexing,
whereby multiple virtual screens can be displayed within a single physical screen.
This is essential for using classic Unix dialup shell accounts, where there is only
one terminal connection.

Screen also allows for keeping its applications alive when it loses its con-
nection to the physical terminal. It supports multiple physical terminals at the
same time, which is useful (or at least novel) for pair programming.

11 Xterms

Most X terminal emulators provide a superset of vt100. Additionally, the offi-
cial xterm program emulates a large number of other terminal types, including
graphics terminals. In fact, I am using it at this moment to write this document.

12 Terminal hacks: VPN over pppd

A trick to implement a Virtual Private Network serves as an example of the
surprising flexibility of the Linux terminal system, of the way it finds utility in
unexpected places.

pppd is typically used to connect to a remote host’s network, such as that of
an Internet Service Provider, over a serial link. The chat program first dials the
modem and executes the login script. Then, once the serial link is established,
it spawns a copy of pppd whose input and output are connected to the serial
device, and pppd itself creates a routable, configurable network device linked to
the remote host. But since pppd itself doesn’t care where its input and output
are connected, it’s quite possible to instead connect it to a pseudo-tty. One very
useful possibility is to connect to a remote host using ssh, and on each host run
pppd connected to the pseudo-tty provided by ssh. Then configure each system

5

to route network packets through the ppp devices created by pppd. This is a
very effective virtual private network implemented using only software already
available on most Linux-based systems.

13 Conclusion

Ironically, the Linux terminal system is lucky to have the burden of supporting
thousands of disparate terminals in addition to hundreds of terminal emulators
and terminal-like applications. It was able to inherit an existing, working termi-
nal system and retain compatibility with all existing programs. While complex
at heart, wrapper libraries are available to unify the interface.

But the Linux terminal system doesn’t support the full range of hardware
available at modern workstations, so it is augmented by programs like X11,
VNC, aRTs, esound, NAS, and others. It would pay to pull together all these
various programs to form a new terminal interface implementing the modern
reality of the terminal.

References

[SM] Richard Stones & Neil Matthew, Beginning Linux Programming, Second
Edition, 1996 & 1999, Wrox Press

[ESR] Eric Steven Raymond, The Art of Unix Programming, 2004, Addison-
Wesley

[CDM] Rémy Card & Éric Dumas & Franck Mével, translation by Chris
Skrimshire, The Linux Kernel Book, 1997 & 1998, John Wiley & Sons

[WRS] W. Richard Stevens, Advanced Programming in the UNIX Environment,
1993, Addison-Wesley

[WWW] Kurt Wall & Mark Watson & Mark Whitis et al.,
Linux Programming Unleashed, 1999, Sams

6

